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Abstract —Cartesiun coordinate equations, which describe the helix geometry of wires within a rope.
are presented. Through the appheation of ditferential geometry and the use of the engineering
drawing development approach. problems associated with the three-dimensional helix geometry of
wire rope can be solved, allowing analysis of the geometnical properties. The geometrical analysis
presented in this puper applics to any rope with axisymmetric strands.
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NOMENCLATURE

helical wire radius in millimetres

binormal vector

unit vector associated with global Cartesian coordinates
curvature of the centroidal axis of the wire per unit length
position vector of space curve

helical radius of wire in milbmetres

helical radius of strand tn millimetres

drum radius in milhmetres

ring radius in millimetres

length of rope in millimetres

path length of strand in millimetres

path length of wire in millimetres

unit tangent vector of space curve

ghobal (that is, Cartesian) coordinudes of spice curve
focal coordinates system of spice curve

derivatives of Cartesian coordinates with respect to 6,

defined parameter

helix angle of wire in a strand in degrees

helix angle of strand in & rope in degrees

helix angle of rope wound around a drum in degrees
double helix angle in degrees

angle of rotation in degrees

ditferential angle of rotation in degrees

wire rotational coordinate in degrees

strand rotational coordinate in degrees

drum rotationul coordinate in degrees

torsion of helical wire per unit length

ridius of curvature ot the centroidal axis of the wire
radius of torsion of the centroidal axis of the wire

double helix
drum single helix
ring single helix
drum double helix
ring double helix
helical wire
hehicud strand
rope

drum

ring

binormal direction
dircetion of wire rotational coordinate in a Lang's lay rope
transpose of a matrix.

*Crown copyright 0 1991,
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1. INTRODUCTION

A wire rope is a complex geometnical structure made up of many individual wires. The
construction of wire rope gives it flexibility and as such it is an ideal structure for the
transfer of tensile load. Under normal operating conditions wires within a rope are subject
to varying degrees of mechanical damage. This damage is closely associated with the
geometrical properties of the individual wires with which a rope is constructed. The degree
of damage depends upon the geometrical and spatial configuration of the wires as well as
their positions within the rope. A thorough understanding of the geometrical properties is
required in order to model the deformation and strain components along individual wires
within a rope under operating conditions.

1.1. Geometrical construction of a stranded wire rope

The construction of two types of stranded wire rope. namely six-strand and multi-
strand. is described in this section to acquaint the reader with wire rope and construction
terminology. The geometrical analysis presented in this paper. however, is not restricted to
these types but applies to any rope with axisymmetric strands.

111, Six-strand rope. Wires which are wound around a central straight “king™ wire
produce a straight strand [Fig. [(a)(1)]. The outer wires in this strand are all single helices.
It now. for example. six of these strands are then wound around a central straight strand
these outer strands will also have a single helical form. Similarly. the central core wire in
each of these strands has a single helical form ; however, the remaining wires in these outer
strands cach take on the form of a double helix. Such a structure is termed a six-strand

({3}

il

{b)

Fig. . Rope construction. (a) Six-strand rope. (i) Strand. (i) Six-strand rope with a main core
strand. (iit) Six-strand rope with an IWRC. (b) Multi-strand rope.
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(a)

| One Rope Lay I

Fig. 2. Type. dircction and length of fay. () Right-hand ordinary. (b} Left-hand ordinary.
(o) Right-hand Lang's. (d) Left-hand Lang’s.

rope (with a main core strand) [Fig. 1(a)(ii)]. This six-strand rope is termed an independent
wire rope core (IWRC) if further strands are wound around it as shown in Fig. F(a)(ii).

1 L2 Multi-strand rope, 1 a straight strand has several Layers of strands wound around
it, a multi-strand rope is produced [Fig. 1(b)]. Whilst the central core strand is straight
containing one straight “King™ wire and (in this case) six single helical wires, the outer
striands are in single helical form cach one contiaining once single helical core wire and six
double helical wires.

L1.3. Types and length of fay. Where there are several layers of wire in a strand, the
wires of one layer can cross over those of an underlying layer a number of times in each
metre length of rope. This configuration helps to bind the rope together. However, it also
causes internal wear in the form of discrete contact points because the wires of different
layers cross over one another with certain contact angles. Strands laid in this way are
referred to as being in cross Ly, This internal wear can be reduced by adopting equal lay
where the adjacent fayers are effectively parallel to one another. If rope strands travel
around in a clockwise direction (that is, in the direction of tightening a right-hand thread
screw) the rope is in right-hand lay and if they run in the opposite direction the rope is in
left-hand lay. When wires lie in the same direction as the strands lic in a rope the rope is in
Lang’s fay and when they lic in the opposite direction to that of the strands the rope is in
ordinary lay. Stranded rope can therefore be produced as various combinations of Lang'’s
(left hand or right hand) or ordinary (left hund or right hand). The distance over which a
strand mukes one complete rotation is known as a lay length (Fig. 2).

2. PREVIOUS WORK

Until recently mathematical models used to study wire ropes have been relatively
simple and almost entirely restricted to strands made up of single helical wires (for example,
the recent work by Phillips and Costcello, 1973, 1985: Raoof, 1983 ; Utting and Jones,
1987). Furthcrmore, although the gcometry of wire cross-scctions governs the spatial
configuration of the wires and strands in a rope, this has not been adequately considered
in previous work. However, work has been carried out on wire rope with complex cross-
sections by Velinsky ¢t al. (1984), and on strand cross-sections in stranded ropes by Phillips
and Costello (1985).
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A relatively small amount of work has been published on the geometry of single and
double helices in ordinary lay rope. In many practical applications. ropes are passed around
sheaves or wound around drums and wires which are double helices in a straight rope then
become triple helices. Despite this. triple helix geometry has not previously been considered
in mathematical models.

Starkey and Cress (1939) considered the contact stresses of wires in a simple six-strand
rope. Both “purallel™ and “cross cutting™ of straight cylinders were used to model the
combination of contact sttuations. However, they assumed that the curved wires could be
approximated by straight cylinders at the contact point. Stein and Bert (1962) removed this
restriction in thetr analysis of the problem. They then presented the coordinate equations
for the ordinary lay double helix and the equation for the curvature of this helix. The paper
by Stein and Bert was very brief: a detailed derivation of the equations was not given.

Karamchetty (1978) attempted a study of the geometry of double helical wires.
However, his equations do not agree either with those of Stein and Bert or those presented
in this paper. For example, it should be possible to obtain the equations for Lang's lay
from the equations of ordinary lay simply by reversing the direction of the wire rotational
coordinate. This is not so for the equations presented by Karamchetty. Indeed. Karam-
chetty’s equations do not distinguish between Lang's lay and ordinary lay at all.

The papers by Wiek (1986) and Knapp (1988) dealt nuunly with the calculation of the
radius of curvature of a single helical wire bent over a sheave. Their work on double helical
wires is restricted to the degencerate limiting case of a strand bent into a circular arce.

Lee ef af. (1987) carried out a more comprehensive study into rope geometry. They
considered. for example, radii of curvature and torsion for the constituent wires when
strand or rope s bent around o sheave or wound around a drum.

3. ASSUMPTIONS

In order to obtain the results given in this paper, the following assumptions were
made:

() Any section normual 1o the centrotdal axis of & wire (that is, any transverse section) s
circular both before and atter being bent over a sheave or wound around a drum.

{b) The shape of the centroidal axis is regarded as the most important geometrical charac-
teristic of a wire.

(¢) The shape of the centroidal axis of a curved wire within o rope is a helix it may be
cither in the form ot a single helix, double helix, or triple helix.

4. DEFINITIONS OF GEOMETRICAL PARAMETERS

The geometrical nomenclature of wire rope used in this paper is provided in Fig. 3 to
which reference should be made when reading the definitions (a) (d) and (g).

() Wire helical radius (R,)

The helical radius of wire wound around any cylindrical strand is defined as the
perpendicular distance from the centroidal axis of the wire to the centroidal axis of the
parent strand.

(b) Strand helical radius (R)

For a strund wound around any type of cylindrical core. the strand helical radius, R,
is detined as the perpendicular distance from the centroidal axis of the straight king wire
to the centroidal axis of the core wire of a helical strand.

(¢) Wire rotationul coordinate (0,)
For two ncurby points on the centroidal axis of a wire the differential df), of the
rotational coordinate 6, is given by the angle between the osculating planes at the two
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Section A-A

Section B-38

Rope
Model

X
A &

Fig. 3. Geometrical nomenclature of wire rope. Key @ A A transverse section of rope, B B transverse
section of strand, ff helix angle of strand, K, and R, helicat radius, 0, and ¢, rotational coordinate.

points. The osculating plane at a point is defined as the plane formed by the tangential and
normal vectors at that point.

(d) Strand rotational coordinate (0))

For two nearby points on the centroidal axis of a strand wound around a core strand,
an IWRC, or a multi-strand rope. the ditferential do), of the rotational coordinate 0, is
defined as the angle between the osculating planes at the two points.

(¢) Ring/drum radius (R, and Ry)

If a strand or rope is passed over a sheave then the ring radius, R, is defined as the
perpendicular distance from the centre line of the sheave to the centroidal axis of the strand
or rope. Similarly, the drum radius. R,. is defined as the perpendicular distance from the
centre line of a drum to the centroidal axis of the strand or rope wound around the drum
(Fig. 7).

(1) Ring/drum rotation (0, and 0,)

For two ncarby points on the centroidal axis of a strand or rope passed over a sheave
the differential dd),. of the ring rotation coordinate @,. is defined as the angle between the
osculating planes at the two points. The drum rotation coordinate. 8,. for a strand or rope
wound around a drum can similarly be defined (Fig. 7).

SAS 18:4-F
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{2y Helix ungle (2. . 7 and )

The helix angle at any point along the centroidal axis of a wire in a rope is defined as
the angle between the tangent vector to the axis and the plane normal to the axis. The helix
angle for points along the axis of a strand or a rope is defined similarly.

For a strand in a straight rope the helix angle is a constant. The strand helix angle of
a straight strand is 90 . It will be shown in this paper that for a wire with the order of its
helical axis greater than one (thatis. n > 1) the helix angle is a periodic function of position.

Definition of Helices
(1) Single helix (Borowski and Borwein, 1989). A curve with parametric equations

X = acost v =hsintl o= cf (la)

is a single helix whose axis ts the Z-axis. For a circular helix the constants ¢ and b are equal.
The constant ¢ determines the pitch (that is. lay length} of the helix.

(11) Double helix. A double helix is a helical curve whose axis is a single helix. For
example. wires wound around a single helical strand or a single helical strand wound around
a drum. The parametric equations for a double helix are given ineqns (1) and (I5).

(i)Y Triple hetix. A triple helix s a helical curve whose axis is a double helix. For
example, @ wire wound around a helical strand which is itself wound around o drum. The
parametric equations for a triple helix are given later in this paper feqns ([7) and in the
Appendix].

Remark. A helix can be a single helix, double helix, triple helix or even higher order.
Anoth order helix has a helical axis of (0= Dth order. A circle or a straight line can be
considered as a degenerate himiting case o a single helix as the helix angle approaches 0 or
90 respectively, For asingle helixonis 1

5. GEOMETRICAL MODELLING OF WIRE ROPE

S Application of differential geometry

The centroidal axis of any wire in a rope is a three-dimensionad space curve, It s
convenient Lo use a local coordinate system at cach point on the centroidal axis defined by
the tangential, principal normal, and binormal vectors at that point. This is referred to as
the Frenet frame at that point (FFig. 4). The position vector of a point on the centrodal
axis is given in global Cartesian coordinates by

Normal 'n’
z Oscutating Piane
Y Tangent 1
Rectilying Plane
2y

Wire Model

Centroidal Axis

Fig. 4. Coordinate system of wire rope geometrical model. Key : ¢ position vector, X ¥-7 global
Cartesian coordinate, t-n-h Frenet frame.
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= Xi+ rj+Zk. (H
The derivative of this. with respect to the variable parameterizing the curve, is
t=Xi+Yj+Zk. (2)
If the curve is parameterized by the angle of rotation 8., the distance dS between two
nearby points on the curve is given by
dS = |r| db.,. (3)
that is.
dS = (X*+ ¥+ Z7)" 2 do,. 4)

The arc length between two points, 6, = a and 6, = b. is given by
h
S =-[ |r] dd.. (5)

Several expressions which are useful in calculating the geometrical properties of space
curves are given below (sce, as general references, Angus, 1975 Francis. 1978 Spiegel.
1981 :

Curvature of a space curve

o M2 20 4 (2R 2R (T - )} o
= .y .y PRI - )
(XY +Z0)

Torston of a space curve

X v Zz
N vz
v z

T e Ty el sy Sy e 4 (7
(YZ-YZ)y +(ZX-ZX) +(YY-XY)
Lee (1989) has presented the following expression for the helix angle [see Fig. S(a)
and (O)}:

ta) Centroidal (c)

Axis ol Strand
Centroidal

Axis of Wire z
(Double Helix)

,
/ ~— Tangent ' I-
’ Y

—

T
! T
B S
| \\ 2{.
LY
,I/‘ Xy \
x”

k‘ooubl e Helix

Single Helical
-Path

| Path of King
Wire X

Fig. 5. Geometrical feature of double helix. (a) Rope model. (b) Development of double helical
path. (c) Helix angle. Key : T tangent vector. * double helix angle.
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w* =tan" ' {“T‘_Z::“:'V*T}. (8)
(XF41H)'s

5.2. Development upproach to geometrical analysis

The engineering drawing development approach applied to rope helical geometry is
based on the idea of projecting the centroidal axes onto a plane, without stretching or
shrinking. Tt uses the fact that a cylinder is a developable surface (Mott, 1976 Abbot.
1987). The approach provides:

{a) a method for evaluating the path length of the centroidal axis of a strand or of u helical
wire in a strand. and
{b) relationships between the wire, strand and rope rotational coordinates.

The developed path of a double helical wire in an undeformed rope is shown in Fig.
5{b). The expression for the path length can be obtained from Fig.5(b) by using simple
trigonometry. Relationships for strands and ropes bent over sheaves or wound around
drums can be obtained similarly, and are summerized in Table 1.

Another application of the development approach s to relate the different rotational
coordinates in a rope (for cxample, €, and 4, in a straight rope, Fig. 3). The rotational
coordinates of helical wires and strands for a rope wound around a drum or bent over a
sheave can be obtained in terms of the rotational coordinate of the drum or the sheave.
Equations for double and triple helices can then be written in terms of any one of the
rotational coordinates.

The refationship between the wire rotational coordinate, ,, and the strand rotational
coordinate, 0, in an undeformed rope s

R,
0, = R tan xcos fitl,, )

Y

The relationship between £, and 4, for a strand wound around a drum is essentially the
same. with 7, 0 and R, replacing fi, 0, and R, respectively.

Table . Fyuations representing the path length of the centre-line of
constituent wires, strund or rope using the development method

Path length (centre-line) Expression
. . . . oKk,
Stratght single helical wire = -
cos X
L . . . h,
Straight double helical wire So= - ko= R,
N sinyeos ff
: RO IF LU
{Alternatively) S. = =+ RIS
cos fi
Ring single helical wire S, = (R0 + R *
Strand around a sheave S, = Ruthe
Ring double helical wire S, =R RO, + RO
Rope around a sheave Sk = Ryl
. ‘ . . U
Drum single helical wire S. ={ IR+ .
Cos™ y
R0,
Strand around a drum S = oAt
cosy
N . cnr o peas . PARETC
Drum double helical wire So = | RIZ+ R 4+ i
cos P
RD”D
Rope around a drum Rg =~

COs ¢
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If the centroidal axis of a wire in an undeformed rope is a double helix then, when the
rope is wound around a drum, the axis will become a triple helix. The relationship between
. and 6, 1s then

R, .
8 = R—tun xsin fcosyb,. (10)
d

5.3. Derivation of coordinate equations

The shape of rope helices can vary considerably, depending on the location of the
wires, the combination of helix angle and the lay directions of wires and strands within a
rope. Also. the shape will depend on how the rope or strand is wound around a drum or
bent over a sheave. The coordinate equations for a single helix are given in Angus (1975),
Francis (1978) and Spiegel (1981) ; the coordinate equations for double and triple helices.
together with some applications, are presented in this paper.

(a) Double helix. The geometrical properties of double helical wires in a rope depend
on the helix angles and lay directions of the wires and strands in the rope. Double helical
wires are found in the helical strands of a straight rope. in a strand bent over a sheave and
in a helical strand wound around a drum.

In a double helix, the geometrical properties such as the helix angle, curvature and
torsion vary cyclically. A rope is referred to as ordinary (or regular) lay if the orientation
of the wire hielix is opposite to the oricntation of the strand helix ; otherwise, it is referred
to as Lang's lay. Equation (11) is derived by resolving the position vectors of poiats on a
transverse strand section (section B B in Fig. 6) onto the transverse rope section (section
A-Ain Fig. 6). The Cartesian coordinate equations, in matrix form, of the ordinary ltay
double helix can be writlen as:

) = 10}{R} (n
where
it ={nrz; (12)
{R}" = {R,R..0} (13)
and

Plane B-B

~

B +4— Rope Model
— Strand Model

[ Wire Model
Plane B-8

»
L
Nx Plane A-A
x

Fig. 6. Coordinate system of double helix (ordinary lay rope).
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cos, (cosf,cosf +sinf) sinf sinf) 0O
{0] =< sinf, (cosf,sinf —sint, cosb.sin ) 0. (14)
tan f 8, sin#, cos § 0

The coordinate equations of the Lang’s lay double helix can be obtained simply by
reversing the direction of 8, in eqn (14) (that is, replacing 6, by —0,) to give:

=1L {R; (15)

where

cost, (cost,cost,—sinf,sinfdsinff) 0
(L} =1 sin0, (cosO,sind, +sinf, cosbsinf) 0. (16)
tan 0, —sinfl, cosf§ 0

{b) Triple helix. For a rope wound around a drum or bent over a sheave, the centroidal
axis of the king wire forms a single helix, the centroidal axes of any single helical wires form
double helices (refer to Fig. 7) and the centroidal axes of all of the double helical wires
form triple helices. The geometrical properties of triple helical wires in a rope depend on
the helix angles and lay directions of the wires, strands and rope.

The Cartestun coordinte equations for a triple helical wire! in a rope wound around a
drum, are derived by considering three planes A A, B B and C C. These are, respectively,
the transverse planes of intersection of the drum, rope and strand. Figure 7 shows a double
helical wire in a right-hand ordinary lay rope, wound around the drum in the right-hand
direction. The coordinate equations are derived as follows. The posttion vectors {relative
to the Frenet frame of the strand) of points in the wire section U C are resolved onto the
planc B B. The position vectors of these mapped points, relative to the Frenet frame of the
rope. are then resolved onto the plane A-A. This allows the geometry of the single helix to
be used to caleulate the triple helix coordinate equation (17).

The coordinate ayuwations, in matrix form, for the triple helix can be written as:

Plane B-8

/Rope Model

Centroidot /‘ /Strcnd Madel

Axis of Wire
{Tripte Helix}

entroidal
Axis of Rope
{Single Helix}

Plane A-A

\

Fig. 7. Coordinate system of triple helix {ordinary lay rope). Key: 7 helix angle of rope. A-A
transverse section of drum, B- B transverse section of rope, C-C transverse section of strand.
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Xoo} = {Xo} + Xty (n
with
oo " = (Xoo. Yop. Zop} (18)
o) = 1Xo. Yo.Zp} (19)
)| = WV Y Za} (20)

where Xp. Yp and Zp, are the coordinates of the centroidal axis of the rope. The expanded
form ol these equations is given in the Appendix to this paper.

5.4, Calculating the geometrical properties of rope helices

The coordinate equations for double and triple helices are given in terms of three
parameters 0. 0, and 0. However, 0, and ¢, can be obtained from 0, by using eqns (9)
and (10). so the coordinate equations depend only on 0,.. The curvature and torsion of the
helices can be obtained from the coordinate equations by ditferentiation.

6. DISCUSSION OF THE IMPLICATIONS OF ROPE GEOMETRY

The main results of the geometrical model for single, double and triple helices are now
bricfly presented and discussed. The relationship between the geometry of a rope and the
type of damage to its constituent wires under cyclic loading has been discussed in more
detail by Casey and Lee (1989).

The author has written a computer program to evaluate curvature, torsion, helix angles
and other geometrical propertics of rope helices, This program was used in drawing the
graphs presented in this section.

6.1, Single helix (reference should be made to Fig. 8)

For u single helical wire the radius of curvature, radius of torsion and helix angle are
constant along the length of the wire [Fig. 8(a)].

The curvature and torsion of a wire are refated to the internal forees and moments by
the equations of equilibrium presented by Love (1944). These equations imply that the
internal forees and moments are constant along the length of each wire of a single layer
and cqual lay multi-layer straight strand subjected to monotonic tensile loading. Under
dynamic loading this may not be the case because of non-lincar eftects, such as Coulomb
damping (Nayfch and Mook, 1979).

The helix angle of a single helical wire is usually between 60 and 90 ; within this range
the radius of curvature, and to a lesser extent the radius of torsion, of the wire changes
rapidly with helix angle [Fig. 8(b) und (¢)]. Theoretically, the bending and torsional stress
components along a large diameter single helical wire would be very sensitive to small
changes in helix angle. Quantities such as the radial force, contact force and complementary
shear force, which depend upon the bending and torsion, would also be very sensitive to
changes in the helix angle. Bending and torsional stresses can be reduced by the use of
smaller diameter wires. However, very small diameter wires (that is. with diameter less than
2 mm) can be susceptible to corrosion (National Coal Board 1980). Although bending and
torsional stresses on a single helical wire surface can be reduced by using smaller diameter
wire, the corresponding decrease in helical radius will, to some extent, affect these stresses
fevel as the result of the decrease in radius of curvature and torsion [Fig. 8(d)].

6.2. Double helix (reference should be made to Figs 9 and 10)

Geometrical Properties: for a double helical wire the curvature, torsion and helix
angle can be regarded as functions of . The mathematical mode! presented in this paper
shows that:
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(2) The curvature. torsion and helix angle are periodic functions of #, with a period of at
most 360 [Figs 9(a). (b). (¢) and 10(a). (b). (¢)].

(b) Fora Lang’s lay rope the period of both curvature and torsion s 360 . with the two
functions being 180 out-of-phasc [Fig. 9(a) and (b}].

{¢) For a strand wound around a drum (in ordinary lay). the torsion has a period of 360°
but the period of the curvature may be less than this [Fig. 10(a) and (b)].

(d) The curve of the helix angle function will shift upward as the helix angle of the strand
increases. For Lang’s lay and ordinary lay ropes. both helix angle functions are 180
out-of-phase [Figs 9(¢c) and 10{c)].

(¢) For a double helical wire in a Lang’s lay rope, the minimum helix angle corresponds
to the location where the maximum curvature and minimum torsion occur. For a
double helical wire in an ordinary lay rope, the maximum helix angle corresponds to
the location where the maximum curvature and minimum torsion occur (Fig. 9).

In order to visualize the geometrical implications of the double helical wires within a
strand. the locations corresponding to different values of ¢, on the outermost layer of an
outer strund are listed below:

(i) Points for which 0, is a multiple of 360 are on the crown of the rope.
{ii) Points for which (8, — 180 ) is a multiple of 360 are points of contuct with the strand
layer immediately beneath the current strand layers.
{iit) Points tor which (£, =90 ) is a multiple of 180 are points of contuct with neighbouring
strands in the current strand layer.

(g) Radius of Curvature & Torsion - mm Helix Angle - Dogrees
800 100
Radius of Curveture
5001
190
Holix Angle
400+
180
Hetical Radiug - 4 mm
300+
Heolix Angle « 85 Degraes
470
2004
100+ Radiug of Torsion 18
O 'S 4. 1 e 1. . 50
[¢] 50 100 160 200 260 300 350
Wire Rotationst Cooranate - Degrees
{b) Radiug of Curvature - mm R« Holical Aadius - mm
3000
2500 20
2000+ A.20 mm 118
1500 12
1000+ 8
increment of Helical Radiug
s00F ¢
o .
& & 25 35 45 55 85 75 85

Helix Angle - Dggrees

Fig. $. (1) Geometrical propertics of single helical wire. (b) Variation of the radius of curvature
with helix angle. (¢} Variation of the radius of torsion with helix angle. (d) Variation of the radius
of curvature with helical radius.

(Continued on next page)



Wire rope geometry 483

te) Radiusg ot Torsion - mm R = Holical Racius ~ mm
250

200

150

100

Increment of Helical Radius

50

5 15 25 35 45 55 85 75 8%
Helix Angle - Degrees

{d) Radius of Curvature - mm Radius of Torsion - mm
3000
R t Re 4
2600 F ad ol Cur (R+20 mm} 200
Aad ot Tor. {R=20 mm)
Helix Angie - 86 Deg.
2000t ¢ o 1180
Rad of Cur
1500
4100
1000 - Rad of Tor
150
500
[¢] s - 9]
4] 6 10 15 20 25

Helical Radius - mm
Fig. 8 - continued
Implications
Elastic rod theory shows that

Bending moment = flexural bending stiffness x change in curvature,
Twisting moment = tlexural twisting stiffness x change in torsion.

Combining these equations with the results of the geometrical model it can be seen that:

(1) Internal components of forces and moments will vary periodically with 0, along a
double helical wire, irrespective of the frictional condition imposed on the wire.

(b) Ifaropeis subjected to tension -tension fatiguce tests the failure modes and the pattern
of contact patches along a double helical wire will vary periodically with 0, (see Casey
and Lee, 1989).

For a rope which is not subjected to bending, the wire helix angle will in practice
always be greater than 60", Thus curvature will, to a good approximation, be 180" out-of-
phase with torsion. This implies that, for a straight rope under tension, points of maximum
bending will also be points of minimum twisting, and vice versa. Bending and twisting will
be periodic in 0, with a peniod of 360 .

The period of the curvature of a strand wound around a drum will be reduced if the
drum helical radius is increased or the strand helix angle is reduced. For an ordinary lay
rope the period of the curvature will also be reduced because the helix angle, for a strand
wound around a drum, can be very small (less than 107).

I a transverse section is made through the longitudinal axis of a rope the variation of
the helix angle of a double helical wire is such that:

(a) The wire cross-section is approximately elliptical when the wire helix angle is a minimum

and is circular when the wire helix angle is a maximum. The lay configuration of a rope
can thus be identified from its transverse section.
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Fig. 9. Geometrical properties of struight double helical wire. (a) Vartton of the curvature ol 4

double helix with wire rotationad coordinate. (b) Variation of the torsion of u double helix with

wire rotational coordinate, (¢} Variation of double helix angle with wire rotation coordinate. Key :
helix angle = 80, R, = 2 mm, R, = 6 mm, —— Lang's lay, ordinary lay.

(b) When the wire helix angle is a minimum the curvature is a maximum and the torsion
is a minimum. Similarly, when the wire helix angle is maximum the curvature is a
minimum and the torsion is a maximum. These characteristics allow high bending and
twisting stresses along a wire to be located.

From (a) and (b). it can be shown that il an ordinary lay rope with a Lang’s lay IWRC
is subjected to a tensile load. the maximum curvature and minimum torsion of a wire will
occur in the regions of contact between the outer strands and the IWRC. The maximum
torsion and minimum curvature occur at the crown of the outer strands.
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Fig. 10. Geometrical properties of drum single helical wire. (a) Variation of the curvature of a

doubje helix with wire rotational coordinate. (b) Variation of the torsion of a double helix with

wire rotational coordinate. (¢} Variation of double helix angle with wire rotational coordinate.
Key: R, = 5 mm, R, = 500 mm, —— Lang’s lay, ordinary lay.
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A single helical wire in a straight strand will be deformed into a double helical wire

when the strand is wound around a drum. A single helical wire has a constant curvature ;
when the wire ts deformed into a double helical wire the curvature will be a periodic function
of #,, which will lic above the 0, axis. The graph of the difference between the double helix
curvature and the single helix curvature will be the same shape as the graph of the double
helix curvature but shifted downwards towards the 6, axis. Similarly, the graph of the
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Fig. 1. Geometrical properties of drum double helical wire. (a) Vanation of the curvature of a
triple helix with wire rotational coordinate. (b) Variation of the torsion of a triple helix with wire
rotational coordinate. (¢) Variation of triple helix angle with wire rotational coordinate. Key ; helix
angle of wire = 80, helix angle of strand = 80 | helix angle of rope = 10 | helical radius of wire =
4 mm, helical radius of strand = 8 mm, drum radius = 500 mm, — Lang's lay, —— ordinary lay.

difference between the double helix torsion and single helix torsion will be the same shape
as the graph of the double helix torsion, but shifted downward towards the 6, axis.
The graphs of the curvature and torsion difference functions imply that:

(a) For a double helical wire in a Lang’s lay strand the highest bending stresses will be at
the crown on the top surface of the strand and the crown in contact with the drum.



Wire rope geometry 487

Curvaturg of Triple Helix - ¥/mm

(6) 5025
002
0o1st

001

o .
o] 500 1000
Wire Rotational Coordinate - Degrees

Torsion ot Triple Helix - 1/mm
1

(b)
0.08
0.08
0.04

0.02

A 1

0 500 1000
wire Rotational Coordinate - Degreos

(c) %0 Triple Helix Angle - Degrees

20t

A

OY/V\VV

-30

A

o] 500 1000
Wire Rotational Coordinate - Degrees

Fig. 12. Geometrical properties of drum double helical wire. (a) Variation of the curvature

of a triple helix with wire rotational coordinate. (b) Variation of the torsion of a triple helix with

wire rotational coordinate. (¢) Variation of triple helix angle with wire rotational coordinate. Key:
—— Lang's lay, ordinary lay.

{b) For a double helical wire in the outermost layer of an ordinary lay strand. the highest
bending stresses will be at the region of contact with adjacent strands. At the crown,
the magnitude of the twisting stress will be a maximum. The highest twisting stresses
will be at the region of contact between the crown and the drum.

6.3. Triple helical wire (reference should be made to Figs 11 and 12)

The variations of curvature, torsion and helix angle for a triple helical wire are more
complicated than for the double helical wire. The mathematical model presented in this
paper shows that:
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(1} The magnitude of the curvature of a triple helical wire in an ordinary lay rope is smaller
than for a wire in a Lang’s lay rope of the same size [Figs 11(a) and 12(a)]. In other
words. bending stresses will be smaller in triple helical wires in an ordinary lay rope.

(ii) The variation in the torsion of triple helical wires in a Lang's lay rope is much less
than in an ordinary lay rope {Figs 11{b) and 12(b)]: triple helical wires in a Lang’s lay
rope are therefore subjected to more twisting,

(it The variation of the helix angle for a triple helical wire in a Lang’s lay rope is much
greater than in an ordinary lay rope {Figs (¢} and 12{0)].

The geometrical properties of a wire in a rope wound around a drum are determined
by the direction of lay of the rope as it is wound around the drum. as well as the lay of the
strands and wires in the undeformed rope.

For a rope wound around a drum. the mathematical model shows that the bending in
double helical wires within a Lang’s lay rope is greater than in double helical wires within
an ordinary lay rope. for all values of 8,. The torsion in a double helical wire in a Lang's
lay rope is greater than in a double helical wire in an ordinury rope for most values of 6.

7. CONCLUSION

A mathematical model based on vector differential geometry and a deveiopment
approach was uscd to investigate the geometrical propertics of rope helices. A computer
program derived from the mathematical model was used to caleulate the geometrical
parameters of double and triple helical wires in strands and ropes. The problems of strands
and ropes bent around a sheave or wound around a drum were considered.

The wire curvature and torsion functions can be related to bending stresses. The
properties of these functions and their implications for bending and twisting stresses depend
on the lay of the rope: both ordinary lay and Lang’s lay were discussed.
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APPENDIX: EXPANSION OF TRIPLE HELIX COORDINATE EQUATIONS IN
MATRIX FORM

1. Muatrix (1o,
Ao} = Ro 1310} (Al)
where

) is a3 x 3 unit matrix

10T = [tan ;. cos . sin fp ). (A2
20 Muatrix 11y
al = (AR (AD)
where
IR = {RR..O; ad)

Rope wound around drum in the lefi-hand direction
(1) The clements of matrix |4} for a aght-hand Lang's Lty rope

Ay =sinfl cos y
Ay eosf sin ) cos y Esin 0, (cos O sin fleos 3 cos fisiny)
Ay s eosty cos O 4 sin th, sin ) sin g
Ay = feos O, st 0] sin y +sin B, (cos O sin fsin y +cos ffeos 7)) sin 0,
+(cos B, cox O ~sin 0 sin 0 sin ff) cos 0,
Ay = sinthy cos O, —cos t, sin 0 sin gy
A= = [eos O sin ] sin y +sin 0, (cos 0 sin ff sin g +cos [l cos 7)) cos i,
+(cos f, cos f —sin O sin 0 sin ff) sin 0. (A6)
(b) The clements of matrix {4} tor a right-hand ordinary lay can be obtained by reversing the direction of 0, in
egn (AS)
A= —sinb cosy
Ay = —cos O, sin ) cos y+sin 6, (cos O, sin ff cos y—cos fsin 3)
Ay = cos thy cos O —sin th, sin 0 sin 3
Ay = {—cos O, sin 0 sin y+sin 0 (cos U, sin [ sin y+cos ff cos 7)) sin 0,
+(cos (0, cos 0, +sin 0, sin 0, sin fi) cos 0,
Ay = sin b cos O +cos th, sin 0, sin gy
Ayy = [eos 0, sin 0 sin y —sin 0, (cos 0, sin fsin 7 +cos fi cos 7)] cos ¢,
+(cos 0, cos O +sin 0, sin O sin ff) sin 0,,. (A7)
Rope wound around drun in the right-hand dircetion

(1) The clements of matrix (A} for a right-hand Lang’s lay can be obtained by reversing the direction of 0, in
eyn (AS)

A, =sind cosy

Ay = cosl, sin 0, cos 3 +sin 0, (cos 0, sin ff cos y —cos fsin 7)

Ay = cos U, cos 0, —sin O, sin 0, sin

Az = —[cos 0, sin 0, sin 7 +sin 8, (cos (0, sin f sin y +cos ff cos )| sin 0,
+(cos 0, cos 0, —sin O sin ) sin /) cos 0,

Ay = —sin 0 cos B, —cos O, sin O, sin 3
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A= —[cos ), sin 6 sin ;+sin 0, (cos 0 sin fi sin 5 +cos ffeos )] cos ),
—(cos ), cos 4 —sin f, sin 0 sin fi) sin 4, (AS)

(b) The elements of matrix {4 for a nght-hand ordinary lay can e obtained by reversing the direction of ¢,
and 0_inegn (AS)

A, = —sind cosy

e
1

—cos B sin ) cos 7 +sin U, (cos O sin fi cos 7 —cos fisin )

Ay =cosycos ) +sin Uy sin 8 sin y

A= [eos 2 sin fsin p—sin 6, (cos Uosin ff sin 008 feos )] sin
+(cos (), cos @ +sin O, sin 4 sin i) cos O,

A o= —sin i, cos 0 +cos  sin dsin

A= eos O sin ) sin ;s —sin #, (cos £ sin ff sin 7 +cos ffeos ] cos g

—{(cos tt, cos ) +sin 0, sin f_sin ff)y sin ), (A9)



